본문 바로가기

ML&DL/PyTorch

[PyTorch] 코드 재현성(reproducibility)을 위한 랜덤시드 설정

 

Neural network의 초기값은 랜덤임으로 실험마다 성능차이가 생길 수 있다. 어느정도 성능을 보장하기 위해 랜덤시드를 고정해두는 것은 필수이다. 매번 뒤적뒤적 찾기 귀찮아서 박제해놓기!

(**seed를 고정해도 패키지 버전이 같지 않으면 성능이 천차만별이므로 꼭꼭 버전을 모두 맞추도록 하자.)

 

def seed_all(seed):
    os.environ['PYTHONHASHSEED'] = str(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # if you are using multi-GPU.
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.enabled = False
    return LocalRandGenerator(seed, "cpu")

    
# Reproducibility
SEED = 2
seed_all(SEED)