KNN (1) 썸네일형 리스트형 K Nearest Neighbor(K 최근접 이웃) 원리 raw데이터가 존재할 때, 그 raw data를 바로 사용할 수도 있지만 이를 가공하여 사용하기도 한다. 주어진 데이터의 특징들을 뽑아서 feature vector를 뽑아내서 이를 머신러닝모델의 input으로 사용하게 된다. 이때의 feature vector는 대체로 높은 차원을 갖는 벡터가 된다. 여러 날(day1,2,3....)이 주어졌을 때, 테니스를 할지/말지 두가지로 분류하는 문제를 통해 feature vector의 예시를 들어보면, Day1의 날씨에 관한 특징 4가지를 이용해 vector를 만들면 4-dimension의 vector가 된다. 이렇게 feature engineering을 거친 데이터 set을 4D공간(space)에 뿌려놓고, 이 데이터들을 분류하는 방법인 K Nearest Nei.. 이전 1 다음