map (1) 썸네일형 리스트형 Bayes theorem(베이즈정리)와 MLE/MAP 이제부터 두 개의 포스팅을 통해 Bayesian learning에 대해서 살펴보도록 할 것이다. 기본적으로 Bayesian learning은 추론에서 확률적인 접근을 제공한다. 우리가 관심을 갖는 값(모델,클래스)이 확률분포에 의해 좌우된다는 생각에서 시작한다. 그리고 관측된 데이터와 함께 확률을 추론함으로써, 관심을 갖는 값에 대한 optimal한 decision을 내릴 수 있다는 것을 기초로 하는 learning이다. 기본적으로 확률시간에 많이 배웠던 베이즈정리를 한번 쉬운말로 정리해보고 class의 분류(classification)에 쓰일 수 있는 MLE와 MAP에 대해 직관적으로 설명해보도록 하겠다. 또한 데이터 모델링에 사용되는 파라미터(weight같은)를 예측하는데 쓰일 때 least squa.. 이전 1 다음