regularization (1) 썸네일형 리스트형 Regularization(정규화): Ridge regression/LASSO 이 강의를 보고 정리한 내용이고 자료도 강의에서 가져온 자료임을 밝히고 시작한다. 이전 포스팅에서 살펴본 linear regression 모델을 다시 살펴보자. 이렇게 least square solution을 구하면 너무 모델이 복잡해진다는 특징이 있다. (weight가 너무 커져서 모델이 너무 요동치게 된다...) 사실 데이터의 갯수가 많아지면 overfitting의 문제가 해결되는데 도움이 된다. 하지만 우리가 가지는 데이터의 수는 한정되어있을 가능성이 높다. 비교적 복잡하고 유연한 모델을 제한적인 숫자의 데이터 집합을 활용하여 fitting하려면 어떻게 해야할까? 과적합문제를 해결하기 위해 자주 사용되는 기법 중 하나는 바로 regularization(정규화)이다.(이를 penalization이.. 이전 1 다음